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High resolution direct numerical simulation (DNS) (512 × 1024 × 512) and large-eddy
simulation (LES) of a shear-free mixing layer are presented. The geometry of the
flow consists of two layers with different turbulence intensities that are in contact
and interact through a fairly thin mixing layer. This geometry is used to explore
the influence of inhomogeneities in the characteristic length scales, times scales and
energy scales on the turbulence properties. Comparison of DNS results is made with
the Veeravalli & Warhaft (J. Fluid Mech. 207, 191–229, 1989) experiment. The LES
is performed on a 32 × 64 × 32 grid using an eddy-viscosity model. The use of such
a model appears to be justified by the very weak departures from isotropy that are
observed in the shear-free mixing layer. The LES predictions are compared with
the filtered DNS data and show that the eddy viscosity model performs very well in
predicting the energy profile as well as the deviation from Gaussianity in the turbulent
velocity field statistics.

1. Introduction
The shear-free mixing layer represents one of the simplest inhomogeneous flows.

It consists of two ‘distinct’ homogeneous regions of different turbulent kinetic energy
interacting through a layer of rapid transition. The layer is said to be shear-free since
the two homogeneous regions have no relative velocity. While flows encountered in
nature or industrial applications are more often not devoid of shear, the study of the
shear-free mixing layer is nevertheless useful since it allows the mixing properties of
turbulence to be examined in a simplified environment. Indeed, turbulent transport
properties in shear flows are more difficult to track since they can be overwhelmed
by production sources originating from gradients in the mean velocity.

The shear-free mixing layer has already received attention in the past, both from
the experimental and the numerical point of view. The first experimental study of the
shear-free mixing layer is due to Gilbert (1980). The flow was obtained by forcing a
stream through a grid with two different mesh spacings. The two sides of the grid
have, however, equal solidity resulting in an outgoing shear-free flow. In this first
experimental study, Gilbert mainly concentrated his attention on the downstream
evolution of the spreading-rate parameter, which is a measure of the thickness
of the mixing-layer. A more extensive experimental study was later performed by
Veeravalli & Warhaft (1987, 1989). Owing to a different experimental set-up, they
achieved a higher ratio between the energies characterizing the two sides of the flow
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and this resulted in the observation of large-scale intermittency in the flow. The
Veeravalli & Warhaft (1989) data will be used here as the main benchmark for the
present study since they contain a detailed documentation of the flow characteristics
we will be examining. From the numerical point of view, the shear-free mixing
layer was studied in Briggs et al. (1996) using direct numerical simulation (DNS).
In that article, the authors also used the data of Veeravalli & Warhaft (1989) as
the point of comparison. Their simulations used a spectral code with a resolution
of 1283 Fourier modes. The microscale Reynolds numbers reached in the low- and
high-energy homogeneous regions were, respectively, 11 and 22.5, which are roughly
half of the values reported in the Veeravalli & Warhaft (1989) experiment (note that
Briggs et al. (1996) use a different definition of the microscale Reynolds number
from that in Veeravalli & Warhaft (1989) and here). However, when properly non-
dimensionalized, they were able to reproduce satisfactorily the turbulence statistics of
the flow.

The purpose of this work is twofold. First, given the computational resources
available today, it is possible to reach, using DNS, higher Reynolds numbers than in
Briggs et al. (1996). In the present study, the microscale Reynolds numbers reached
in the low- and high-energy homogeneous regions are, respectively, 32 and 69. The
results reported earlier can thus be complemented and their robustness in the presence
of increased turbulence studied. The second aim of this work is to perform a detailed
and documented large-eddy simulation (LES) of the shear-free mixing layer. In that
respect, the creation of a DNS database at higher Reynolds number is necessary in
order to make meaningful LES assessments. The shear-free mixing-layer allows us
to test how traditional LES models perform in the presence of an inhomogeneity
without having to deal with difficult numerical issues. Indeed, as argued in Briggs
et al. (1996), it is possible to use a spectral code to study the shear-free mixing layer
and we can thus focus on the accuracy of the modelling while avoiding contamination
of the results by commutation errors, etc.

This paper is organized as follows. First, we detail the initialization procedure
used in the simulation. Since the flow is not statistically stationary, this initialization
procedure has a fairly strong influence on the evolution. Although we will focus here
on the shear-free mixing layer, the method proposed in the present work can easily
be used for other flows with one inhomogeneous direction. The next section of the
article is devoted to the description of the DNS. All the relevant parameters are
listed and comparison is made with the Veeravalli & Warhaft (1989) experiment. In
particular, measurements of inhomogeneity, anisotropy, deviations from Gaussianity
and kinetic energy balance are presented. The section on the LES of the shear-free
mixing layer follows. A detailed comparison between the filtered DNS data and the
LES predictions is presented. It is shown that simple eddy-viscosity models perform
very well for the present test case, most probably because the flow seems to be almost
isotropic in the small-scale range that is not resolved by the LES.

2. Initialization of the flow
From the numerical point of view, one of the most appealing properties of the

shear-free mixing layer is the possibility of simulating this flow with a purely spectral
three-dimensional code. Indeed, periodicity can be enforced by considering a second
mixing-layer, which performs the ‘reverse’ transition compared to the first one. The
situation is depicted in figure 1. This also has the advantage that results gathered from
the two mixing layers can be averaged to improve the statistics. This possibility will
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Figure 1. Graphical representation of the shear-free mixing layer.

be systematically exploited in the presentation of numerical results in the following
sections.

Given a three-dimensional spectral code, the non-trivial part of the simulation is
then to build a suitable initial condition that mimics the mixing layer. Indeed, because
the decaying mixing layer is not statistically stationary, it is not acceptable to wait
until the initial condition is forgotten by the flow due to the stochastic nature of
turbulence. Indeed, the simulation will remain quite strongly influenced by the initial
state of the velocity field. To proceed, it is necessary to introduce a few definitions
and notations. The Fourier modes associated with the velocity field ui(x, y, z) will be
denoted ũi(kx, ky, kz) and are defined by

ũi(kx, ky, kz) =
∑

x

ui(x, y, z)e−ik · x . (2.1)

Since the mixing layer is homogeneous in two directions, it is also convenient to con-
sider two-dimensional Fourier transforms. Here, we take the y-direction as the inho-
mogeneous direction and define the two-dimensional Fourier modes ũi(kx, y, kz) by

ũi(kx, y, kz) =
∑
x⊥

ui(x, y, z) exp(−ik⊥ · x⊥), (2.2)

where x⊥ = (x, z) and k⊥ =(kx, kz). For convenience, we will also adopt the following
notations: ux ≡ u, uy ≡ v and uz ≡ w. When the flow is homogeneous and isotropic, a
common way to initialize the modes ũi(kx, ky, kz) is to fix their amplitudes to match
a given energy spectra E(k) and assign them random phases in such a way that
continuity is enforced (see e.g. Rogallo 1981). One then has,

〈|ũi(kx, ky, kz)|2〉 = A2(k) with E(k) = 2πk2A2(k), (2.3)

and k2 = k2
x + k2

y + k2
z . For the case at hand, we can adopt a similar strategy but consider

instead the two-dimensional spectra in each plane perpendicular to the direction of
inhomogeneity. Indeed, in those planes the flow is assumed to be homogeneous and
isotropic. We thus initialize our flow by imposing the following constraints on the two-
dimensional Fourier modes (the assignment of the random phases and the treatment
of continuity will be described below),

〈|ũi(kx, y, kz)|2〉 = B2(k⊥, y) with E(k⊥, y) = πk⊥B2(k⊥, y), (2.4)
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and k2
⊥ = k2

x + k2
z . In (2.4), E(k⊥, y) is the energy spectra of the velocity field in the

(x, z)-plane. The arbitrary part remaining is the choice of the function B2(k⊥, y). For
homogeneous isotropic flows, it is trivial to relate the two-dimensional amplitudes to
the three-dimensional amplitudes (using Parseval’s theorem):

B2(k⊥, y) =

∫
dkyA

2
(
k2

y + k2
⊥
)
. (2.5)

Note that, as expected, B2(k⊥, y) is independent of y for homogeneous flows. In the
case of the shear-free mixing layer, we will choose an amplitude function A(k) for
each homogeneous region and compute the corresponding functions B(k⊥, y) using
(2.5). If the two-dimensional amplitude functions in the high-energy and low-energy
regions are, respectively, denoted BH (k⊥, y) and BL(k⊥, y), we then define the complete
two-dimensional amplitude function for the shear-free mixing layer as,

BML(k⊥, y) = (1 − f (y))BL(k⊥, y) + f (y)BH (k⊥, y). (2.6)

The function f (y) is equal to 0 in the low-energy region and equal to 1 in the high-
energy region; inside the mixing layers, it varies smoothly from 0 to 1. The complete
initialization procedure is as follows. First, we initialize our three-dimensional Fourier
modes using the procedure of Rogallo (1981). The three-dimensional energy spectra
used here is taken from the high-energy homogeneous region of the mixing layer.
This ensures that the Fourier modes ũi(kx, ky, kz) satisfy the continuity equation.
The three-dimensional Fourier modes are then transformed to ũi(kx, y, kz) using a
one-dimensional Fourier transform. At this point, their two-dimensional amplitudes
are measured and the modes are rescaled in order to match the prescribed two-
dimensional amplitudes given by (2.6):

ũi(kx, y, kz) → ũ′
i(kx, y, kz) = ũi(kx, y, kz)

√
BML(k⊥, y)

|ũi(kx, y, kz)|2
. (2.7)

The ũ′
i(kx, y, kz) are then transformed back into three-dimensional Fourier modes,

ũ′
i(kx, ky, kz). By performing the transformation (2.7), we, of course, destroy the

continuity property of the initial field and it has to be recovered by projecting
the ũ′

i(kx, ky, kz) onto a divergence-free field:

ũ′
i(kx, ky, kz) → ũ′′

i (kx, ky, kz) =

(
δij − kikj

k2

)
ũ′

j (kx, ky, kz). (2.8)

This, in turn, partly undoes the prescription of the two-dimensional amplitudes.
Fortunately, by iterating the transformations (2.7) and (2.8), we converge to a velocity
field that has two-dimensional amplitudes arbitrarily close to BML(k⊥, y) and which
satisfies continuity. At this stage, the flow still has random phases. In order to correct
this problem, we have time evolved the flow until the global skewness of the velocity
derivatives reached a converged value. Between each time step, the mixing layer was
rebuilt using (2.7) and (2.8) in order to retain the desired two-dimensional amplitudes
profile. After that, we stopped the rebuilding procedure and let the flow decay freely.

3. DNS results
3.1. Parameters of the simulation

The choice of parameters for the DNS was mainly guided by the following
considerations. In order to have an experimental reference to compare with, the
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parameters of the DNS have been chosen to match as closely as possible those from
the Veeravalli & Warhaft (1989) experiment performed using the 3 : 1 perforated
plate. Of course, since numerical capabilities are not unlimited, some compromises
had to be made. The most important restriction in the present study is the ability to
resolve adequately the high-energy region of the flow. Given this constraint, the initial
three-dimensional spectra of the homogeneous high-energy region EH (k) was chosen
to match the spectra measured in the Comte-Bellot & Corrsin (1971) experiment at
stage 1. This experimental spectra was fitted with the following function,

EH (k) =
ak4

(k4 + q4)1+α
exp(−bkβ), (3.1)

which contains several parameters a, q , b, α and β . This fairly complicated function
has been chosen because it allows an easy fit of various properties of the energy
spectrum. For instance, the parameters b and β can be used for characterizing
the viscous range of the spectrum. The parameters q and α determine the energy
peak and the transition between the energy-containing scales and the viscous range.
Finally, a determines the total energy. The function (3.1) does not allow us to derive
analytical expressions for the total energy and the total dissipation in terms of the
parameters a, q , b, α and β . It is thus not possible to express these parameters
in terms of simple global experimental data and we have not found a systematic
procedure for prescribing them. It has, however, been observed that the following
set of parameters, a = 10.6, q = 1.5, b =0.02, α = 1.233, β = 1.1, allows us to fit almost
perfectly the Comte-Bellot & Corrsin spectrum. Of course, the value of some of these
parameters might depend on the units chosen to perform the simulation. This is
not really an issue since the time scale and the length scale can be seen as entirely
defined by the computational domain size lx = 2π, ly =4π, lz = 2π and by the viscosity,
chosen here to have the numerical value of 0.006. In the Veeravalli & Warhaft (1989)
experiment, the ratio of energy between the two homogeneous regions is 6.27 while
the ratio of dissipation is 7.28. These two ratios can be reproduced well by choosing
the spectra of the low-energy homogeneous region to be of the same form as (3.1),
but with the following parameters: a = 2.74, q = 3.33, b = 0.027, α =1.233, β =1.1.
Furthermore, with the above choices of parameters, the maxima of the two spectra are
separated by a ratio that matches the inverse ratio of the initial integral length-scales
in the Veeravalli & Warhaft (1989) experiment between the low- and high-energy
regions. Accordingly, the differences in typical sizes of the large-scale structures on
both sides of the mixing layer are also reproduced. From these definitions, it is
possible to compute numerically the two functions BL(k⊥, y) and BH (k⊥, y) required
in (2.6) using (2.5). The initialization procedure is then fully defined if the smoothing
function f (y) is prescribed. Here, the following choice has been adopted:

f (y) =



0 if 0 < y < 5ly/24,

1/2

(
sin

(
12π

(y − ly/4)

ly

)
+ 1

)
if 5ly/24 < y < 7ly/24,

1 if 7ly/24 < y < 17ly/24,

1/2

(
sin

(
12π

(y − 2ly/3)

ly

)
+ 1

)
if 17ly/24 < y < 19ly/24,

0 if 19ly/24 < y < ly.

(3.2)

With this smoothing function, the high-energy region and the combined low-energy
regions have the same length. Both are five times larger than each of the two
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Figure 2. Three-dimensional contour plot of the energy density for the initial velocity field.
The labels indicated on the figure correspond to grid-points. The data field was sampled every
four grid-points in order to produce the graph.

mixing layers. As an illustration, the contour plot of the initial energy density is
shown in figure 2. As far as the numerics are concerned, our DNS was performed
using a pseudo-spectral dealiased code. The grid resolution adopted consists of
512 × 1024 × 512 points. The higher-resolution dimension being the direction of
inhomogeneity, taken here to be y.

3.2. Kinetic energy diagnostics

One of the major motivations of this study is to investigate the effect of
inhomogeneities on the turbulence properties. Since the direction of inhomogeneity is
along y, it is convenient to present statistics obtained by averaging over the x and z

directions. For instance, the kinetic energy and dissipation rate profiles are calculated
from the expressions:

E(y) = 1
2
|ui(x)|2 =

1

nxnz

∑
x,z

1
2
|ui(x)|2, (3.3)

ε(y) = 2νSij (x)Sij (x), (3.4)

where Sij (x) = (∂iuj + ∂jui)/2. Here, and in the rest of this paper, the overbar
denotes averaging over the planes perpendicular to the direction of inhomogeneity.
Figures 3(a)–3(d) represent the profiles of the kinetic energy and the dissipation rate
at three different times in the simulation (both absolute and normalized profiles are
plotted). Time has been normalized using the initial eddy turnover time, t∗ = tε0/k0

where t is the dimensional time, k0 is the initial average turbulent kinetic energy and
ε0 is the initial average dissipation rate. With the definitions (3.3–3.4), the average
energy density is given by E = n−1

y

∑
y E(y) and a balance equation can be derived

by multiplying the Navier–Stokes equation by the velocity before taking the average
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Figure 3. (a) Energy and (b) dissipation rate profiles across the mixing layer calculated from
(3.3) and (3.4); (c) energy and (b) dissipation rate profiles normalized by their average value
at the times considered; –––––, t∗ = 0; ---, 0.56; – · –, 1.51.

over the plane x, z:

∂tE(y) = −∂yΦ(y) − ε(y). (3.5)

The plane-averaged energy thus evolves owing to two types of terms. The first one
is the derivative of a flux which does not affect the total energy, but modifies its
spatial distribution in y. It is the sum of three terms corresponding, respectively,

to a convective flux Φc(y) = |ui |2uy/2, a pressure flux Φp(y) = puy and a viscous

flux Φν(y) = 2νSiyui . Although we do not report here graphs with the detailed
contributions of each term to the total flux, it is systematically observed that, at the
Reynolds number of the present simulation, Φν(y) is by far the smallest contribution
to the total flux. Because it appears in divergence form, the flux term does not
contribute to the total energy balance. As shown in figure 4, the flux contribution
appears to have no mean component inside the homogeneous layers. In the mixing
layer, however, the situation is different and the flux term is systematically negative
and corresponds to a positive contribution to the local energy balance. As a result,
the flux term almost cancels the viscous dissipation and tends to maintain a higher
energy level in the mixing layer.

Figure 3 shows that as the decay proceeds, the mixing layer widens but the
homogeneous regions remain largely discernible. A measure of the energy decay
would be the ratio between the energy profile and its time derivative E(y, t)/Ė(y, t).
This would provide a direct and instantaneous estimate of the characteristic decay
time as a function of the position y. However, such a profile appears to be highly
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fluctuating even at the resolution used in the present DNS. The main reason is
that the flux contribution to the evolution of E(y, t) has no definite sign despite
having a non-negligible averaged amplitude. A more stable measure is given by the
energy profile rescaled by its initial value E(y, t)/E(y, 0). Figure 5 clearly provides
two important pieces of information about the energy decay. First, it appears that the
decay rate is proportionately different between the two homogeneous regions. Even
though both regions correspond to nearly homogeneous and isotropic turbulence,
this is not surprising since they are characterized by different Reynolds numbers and
different flow structures, as highlighted in figure 2. Secondly, as expected, the energy
exchanges between the two layers (predominantly from the high- to the low-energy
region) are responsible for a local and well-marked peak in the rescaled energy profile
corresponding to a significant drop in the decay rate in the mixing layer.
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Figure 6(a) provides similar information and shows the temporal decay of the
average energy in the high-energy and low-energy homogeneous regions. Assuming
an asymptotic power-low decay E(t) ∼ tn, a decay exponent of n= −1.3 is found
in the high-energy homogeneous region while in the low-energy region the decay
exponent is n= −1.1 (the global energy decay has a decay exponent of n= −1.3).
This difference is obviously reflected in figure 5 as the two layers have experienced
a different proportional energy loss. These decay rates are compatible with the DNS
of Briggs et al. (1996) for which a k4 low wave-vector energy spectrum was adopted
as in the present simulation. In figure 6(b) the two-dimensional spectra defined in
(2.4) are presented to confirm that the flow is sufficiently resolved. As was observed
in Briggs et al. (1996), the energy of the high wavenumbers decays faster with time
than the energy of the low wavenumbers. It is noted that for the discretization used
and the times considered, the energy peaks remain at a constant wave-vector in the
homogeneous regions. The strong influence from the homogeneous layers seems to
induce a shift of this energy peak in the mixing layer towards higher wave-vectors,
though this effect remains moderate for the times considered.

The plane-averaged energy and dissipation profiles can be used to define a local in
y microscale Reynolds number Rλ and viscous length η:

Rλ(y) =
2

3

√
15

νε(y)
E(y), (3.6)

η(y) =

(
ν3

ε(y)

)1/4

. (3.7)

Figures 7(a) and 7(b) display the distribution and evolution of these quantities.
Starting from Rλ ≈ 30 and Rλ ≈ 70, respectively, in the low- and the high-energy
layers, the Reynolds number is then observed to drop significantly in the high-energy
layer while it remains approximately constant owing to the respective decay of both
energy and dissipation in the low-energy layer. Figure 7(b) indicates that according
to the criteria kmaxη � 1.5, the flow appears to be well resolved throughout the
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mixing layer. In the present DNS, kmax = (2π/lx)(nx/2) = (2π/ly)(ny/2) = (2π/lx)(nz/2)
is identical in each direction since twice as many modes are used in the y-direction
than in the other directions while the computational domain is also twice as large in
that direction.

3.3. Variance profiles

Figure 8 contains the variance profiles u2, v2 and w2 at different times as well
as corresponding experimental points taken from the Veeravalli & Warhaft (1989)
experiment (for the 3 : 1 perforated plate). The curves have been normalized as in
Veeravalli & Warhaft (1989). First, each variance (e.g. u2) is normalized by the

(average) value it reaches in the high-energy homogeneous region (e.g. u2
H ). Secondly,

the curves are centred around their inflection points (respectively, y1, y2 and y3 for u,
v and w). Finally, the direction y is normalized by the half-width l1/2. This quantity is
defined by mapping the lower and upper sides of the variance profile of u, respectively,
to 0 and 1 and measuring the distance l1/2 between the positions at which this profile
reaches 0.25 and 0.75. Thus, l1/2 is computed only from the variance profile of u,
but used to normalize all three profiles. At each time presented, this normalization
procedure is applied to our numerical data. The experimental points are obtained by
averaging those found in Veeravalli & Warhaft (1989) for the three different distances
from the grid. As was observed in Veeravalli & Warhaft (1989), the collapse of the
profiles at the different times is fairly good using the above normalization and we
observe that the comparison with the experiment is also satisfying. The collapse of
the profiles is quite surprising at first sight since energy is expected to be transported
from the high-energy to the low-energy homogeneous layer. However, the reasonable
collapse observed in both the DNS and the experimental data is because the energy
ratio between the two homogeneous layers varies much less than the energy levels.

The time evolution of the half-width l1/2 of the mixing layer is compared to the
integral length scales 	 = E3/2/ε in the homogeneous layers (figure 9). The evolutions
of these characteristic large-scale lengths do not seem to be correlated. During the
initial stages t � 0.7 of the simulation, l1/2 remains practically constant. After that, it
appears to grow logarithmically.

This transition might be related to the time required for building the phase in
the initially random velocity field. Indeed, the amplitudes of the Fourier modes at
t = 0 are prescribed by the initialization procedure. However, the initial phases of
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these modes are essentially random. This affects a series of quantities such as the
skewness and the kurtosis that require a certain transition time before matching the
experimental data. This might also explain the time required to observe an asymptotic
decay for the energy (which is also of the order of t ≈ 0.7). For the times considered,
the evolutions of the integral length scales 	 do not exhibit a transition or a clear
trend.

3.4. Intermittency

The skewness and kurtosis of a velocity component ui are, respectively, defined as,

Sui
=

u3
i(

u2
i

)3/2
, Kui

=
u4

i(
u2

i

)2
. (3.8)

For homogeneous isotropic turbulence, measures of these quantities show that they
are very close to those calculated for a Gaussian signal, i.e. S = 0 and K = 3.

The skewness profile of v is shown in figure 10(a). The y-direction has been
normalized as in figure 8 for the variance profiles. The skewness profile of v exhibits
a sharp deviation from the Gaussian value around the location of the mixing layer.
As described in Veeravalli & Warhaft (1989), this behaviour is attributed to the
intermittent penetration into the low-energy region of structures originating from the
high-energy region (a similar penetration of structures from the low-energy region
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into the high-energy region is certainly also happening, but is, however, much less
frequent). Agreement with experimental data from Veeravalli & Warhaft (1989) is
very good, both in terms of the location of the peak and its amplitude. For symmetry
reasons, it is expected that the skewness of u and w should remain close to zero. Up
to statistical deviations, this is confirmed in our simulation (although not illustrated
in this paper).

Kurtosis profiles of the velocity components are shown in figure 10(b–d) and display
deviations from the Gaussian value of 3 again around the location of the mixing
layer. In the Kurtosis of u, we observe an unexpectedly high peak in the profile
(compared to the experimental data). At this point, we attribute this to the profile
being computed from a single realization of the flow (although averaging in the
(x, z)-planes was performed). We also note, however, an initial small peak in this
Kurtosis component present in the initial condition (in contrast to the Kurtosis of the
other two velocity components), but it is not clear whether or not it was amplified
during the evolution of the flow and by what mechanism. The other two Kurtosis
profiles agree very well with the experimental data again both in terms of the location
of the peaks and their amplitudes.

Both the numerical simulation and the experiments indicate that the deviations
from the Gaussian values for S and K occur on the low-energy side of the inflection
points. This supports the idea that these deviations result from the more likely
penetration of intermittent structures from the high-energy region into the low-energy
region. Finally, it must be stressed that the initialization procedure presented in
§ 2, though quite sophisticated, does not allow imposition of the initial skewness
or the kurtosis profiles in the region of the mixing layer (Gaussian values are, in
fact, observed everywhere for the initial profiles as shown in figure 10 except for a
small deviation for Ku, as mentioned above). The fact that the DNS later reproduces
the experimental profiles observed in the mixing layer indicate that the transport
mechanisms are successfully resolved.

3.5. Anisotropy

Briggs et al. (1996) observed that the shear-free mixing layer was only mildly
anisotropic. Our measurements confirm this property. This is particularly important
for performing LES of this flow. Indeed, most of the subgrid-scale models implicitly
assume that the small unresolved scales are statistically isotropic. This is definitively
the case for all the eddy-viscosity models. We have thus focused our attention on the
possible anisotropy that could develop at small scales and have recorded the average
square value of the velocity gradient components:

Gij = (∂iuj )2 (no summation). (3.9)

According to the theory of isotropic turbulence (Batchelor 1953), the following relation
should hold for all i �= j (this property is only valid in a Cartesian coordinate system
and it should be stressed that, despite the notation, Gij is not a tensor):

Gij = 1
2
Gij (no summation). (3.10)

Moreover, by symmetry, it is expected that Gii is independent of i and that Gij

is independent of i and j for an isotropic turbulent flow. Based on this, the
Shebalin angle (Shebalin, Matthaeus & Montgomery 1983) is also sometimes used to
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characterize departure from isotropy for flows with one direction of inhomogeneity:

tan2 θ = 2
Gxx + Gxy + Gxz

Gyx + Gyy + Gyz

. (3.11)

Obviously, for isotropic turbulence, θ = arctan
√

2 ≈ 54◦. As can be seen in figure 11,
none of these anisotropy measures show a significant departure from isotropy.
Although this is in agreement with the previous studies of the shear-free mixing
layer, it is remarkable that the departure from isotropy is so weak even at the
interface between the two homogeneous layers.

4. LES of the shear-free mixing-layer
4.1. Notations and conventions – LES model

Starting from the Navier–Stokes equations, we obtain the LES equations (4.1) by
applying a filter, here denoted ∼ (since our code is spectral, we will only consider
spectral cutoffs for the LES filter):

∂t ũi + ∂j ( ˜̃uj ũi) = −∂ip̃ + ν∆ũi − ∂j τ̃ij . (4.1)

The unknown subgrid-scale stress (SGS) tensor τ̃ij = ũiuj − ˜̃uiũj must be modelled
in terms of ũi in order to close (4.1). In this work, we will use for τij a model
proposed in Wong & Lilly (1994) and further studied in Carati, Jansen & Lund
(1995) and in Dantinne et al. (1998). This model, which can be considered as a
variant of the dynamic Smagorinsky model (see Smagorinsky 1963; Germano et al.
1991; Lilly 1992; Germano 1992), has been shown to perform very well in the context
of homogeneous isotropic turbulence and its predictions are extremely close to the
dynamic Smagorinski model. The advantage of this model rests upon the ease with
which its dynamic version can be implemented. The definition of the model is:

τ̃ij − 1
3
τ̃kkδij = −2C∆̃4/3S̃ij , (4.2)

where S̃ij = (∂iũj + ∂j ũi)/2 is the resolved strain tensor and ∆̃ is the LES filter width.
The dimensional parameter C is evaluated by introducing a second (coarser) filter ̂
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(the test filter) and using the dynamic procedure:

C =
1

2
(
∆̃4/3 − ∆̂4/3

) × 〈L̂ij Ŝij 〉
〈Ŝij Ŝij 〉

, (4.3)

where L̂ij = ̂̃uiũj − ̂̂uiûj is the Leonard tensor (note that we have systematically
used the property ̂̃. . . ≡ .̂ . . valid for spectral cutoffs). As in the dynamic Smagorinski
model, the only free parameter available is the ratio of the spectral cutoffs: ∆̃ / ∆̂. In
the following discussion, this ratio will be assumed to be equal to 2. For homogeneous
isotropic turbulence, the averages 〈· · ·〉 in (4.3) are obtained by averaging over
the whole computational domain. The idea is of course that, since turbulence is
homogeneous, the constant C should be statistically independent of the position.
For inhomogeneous flows in one direction, like the shear-free mixing layer or the
channel flow, dependence on the direction of inhomogeneity is introduced by averaging
quantities only over the other two homogeneous directions. This is justified only if the
flow is not too inhomogeneous. The dynamic coefficient C then depends explicitly on
the inhomogeneous direction: C = C(y). Our LES condition was obtained by filtering
(with a sharp spectral cutoff) the initial DNS field down to 32 × 64 × 32 modes. Thus,
only 1 / 16 of the gridpoints are retained in each direction for the LES, meaning
that there is one LES grid point for about 4000 DNS grid points. The box-size is
unchanged and remains 2π × 4π × 2π. In our study, we have also included a run
obtained at LES resolution, but with no subgrid-scale stress model to emphasize the
effect of the model in the LES simulation. For comparison, we have filtered the DNS
fields stored during the simulation down to 32 × 64 × 32 modes.

4.2. Comparison of the filtered DNS and the LES

Figure 12(a) represents the temporal evolution of the normalized global kinetic energy
E / E0. From the graph, it is clear that the simulation with the LES model reproduces
this diagnostic well, whereas the run with no model does not. Likewise, figures 12(b)
and 12(c) show that the two-dimensional spectra with LES modelling are in good
agreement with the DNS data. Two-dimensional spectra gathered from the run with
no model exhibit a strong pile up of energy in the high wavenumber side of spectra,
indicating that the flow is not adequately resolved in that case.

To further illustrate the decay of the kinetic energy, we display in figures 13(a) and
13(b) the profiles of the kinetic energy at two different times. This is, of course, a
more sensitive diagnostic since it retains information about the inhomogeneity of the
flow. Both figures again reveal a good agreement between the DNS and LES runs
and a poor behaviour of the run without modelling. Variance profiles of u, v and w

have been examined (not shown) and again the LES matches the DNS very nicely,
whereas the no-model simulation performs poorly. For our assessment of LES, we
have retained the same intermittency diagnostics described earlier: the skewness and
the kurtosis of the velocity components. A sample of those quantities is displayed
in figure 14. Once again, the LES run produces results which compare well with
the filtered DNS data. Surprising at first, the run without the subgrid-scale stress
model is also performing quite well. However, since the intermittency is attributed to
large-scale structures penetrating the low-energy region from the high-energy region
this is to be expected. Indeed, looking at the spectra displayed in figure 12(c), we see
that the run without the subgrid-scale stress model is not ill-behaved for modes at
the lowest wavenumbers.
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4.3. LES at infinite Reynolds number

The preceding section seems to establish that the LES based on an isotropic eddy-
viscosity model is able to reproduce satisfactorily the DNS and the experimental
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results. It is thus tempting to extend the application of the LES to Reynolds-number
cases that are out of reach of DNS. In particular, we have considered the limit of
‘infinite’ Reynolds-number flows (ν =0), starting with the same initial condition as for
the DNS, filtered down to 128 × 256 × 128 Fourier modes. With the initial spectrum
chosen for the DNS, such a resolution ensures that almost all the energy is captured
by the LES at the beginning of the simulation. In an hypothetical DNS at ν = 0, the
total energy of the flow has to be conserved and energy is progressively transported
from the large scales to smaller scales. In the LES, this transport mechanism has to
be accounted for by the subgridscale model and the resolved energy should decrease
appropriately as time passes. This, of course, means that for long times, the resolved
energy in the LES only amounts to a small fraction of the total energy of the flow
(as is the case in our simulation). This is somewhat contradictory with the traditional
definition of an LES and indicates that the LES is pushed to an extreme limit.
Nevertheless, interesting results can be extracted from this simulation.

First, it is observed in figure 15 that high-order statistics, such as the skewness and
the kurtosis of the velocity distribution are very stable and close to the experimentally
observed values. This confirms that these quantities depend mainly on the largest
scales of the flow. Secondly, the LES with ν = 0 allows us to observe the evolution
of the flow for a long period without being concerned by the drop in the Reynolds
number. It is thus possible to observe a longer asymptotic range in which both the
energy and the subgrid-scale dissipation are following power laws. This is represented
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in figure 16 and the decay exponents are reported in the figure. In this limit of infinite
Reynolds numbers, the limitation in time comes from the increasing of the mixing-
layer width, which, at the end of the simulation, is so large that the homogeneous
layers almost disappear. The evolution of the half-width, presented in figure 17, shows
the same transition as for the DNS case. Since the initial condition is essentially the
same, the transition time might be due again to the building of actual turbulent
phases in the Fourier modes, starting from randomly distributed phases.

5. Conclusions
This study of the shear-free mixing layer reveals that DNS is capable of reproducing

most of the aspects of the experimental database that have been produced by
Veeravalli & Warhaft (1989). Energy, dissipation rate and velocity variance profiles
are accurately reproduced. Also, departure from Gaussianity inside the mixing layer
revealed by the measurement of the skewness and the kurtosis of the velocity field
are also in excellent agreement with the experimental observation. This is particularly
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satisfactory since inside the mixing layer the initial values of these quantities cannot be
prescribed by the initialization procedure and are entirely produced at later times by
the transfer mechanisms simulated by the DNS. It is also observed that, in the absence
of shear, no significant anisotropy is observed in this flow. This is consistent with
previous numerical results and strongly supports the use of eddy-viscosity type models
for the LES of such flows. As a consequence, it is not surprising that comparisons
between the predictions of LES using such eddy-viscosity models and DNS show
very good agreement. An LES in the limit of infinite Reynolds number has also been
presented and the results indicate that in this limit, the major aspects of the mixing
layer observed at moderate Reynolds number are retained.
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